
数学Ⅱ·数学B (100点満点)

問題 番号 (配点)	解答記号	正 解	配点	問題番号(配点)	解答記号	正解	配点
	(ア, イ)	(4, 2)	1		<u>ア</u> イ	2 5	2
	(ウ, エオ)	(9, -3)	1		ウエ	20	1
	カキェナク	-2 x + 5	3	-	オ	0	1
	x - ケ	x - 7	2	_	カ, キ, ク, ケ	5, 2, 4, 2	3
	コ, サ	4, 3	3		⊐ □	3	2
	シス	25	2	第4問 (20)			
第1問	セ	4	3	-	サシ	2 3 1 2	2
	У	8	3	-	<u>ス</u> セ	,	1
	<u>タチ</u> ツ	49 2	3		<u>ソ</u> , チ タ, ツ	$\frac{2}{3}, \frac{1}{6}$	3
	テ,トナ	1, 16	2		テ	2	1
	=	2	1		<u>トナ√三</u> ヌ	$\frac{15\sqrt{7}}{2}$	2
	ヌネ	-1	2		ネ√フハ	$\frac{5\sqrt{7}}{2}$	2
	1	0	2		ア. イ	7. 0	1
	Λ	4	2	-	ウ. エオ	4: 00	2
	アイ	-a	2	-	カ. キ	7. 0	1
	ウ, エ	3, 3	3	-	クケ	16	1
	才	а	2	_		2	1
	カ, キ	-, 3	3				
第2問	ク, ケ, コ	a, 2, 2	3	第5問 (20)	サ, シ	9, 7	2
(30)	サシ, ス	-2, 2	3		, , , , , , , , , , , , , , , , , , ,	2	2
	セ,ソ	2, 2	3]	セ、ソタチ	0. 200	2
	タチ , テ	32, 4	5	-	ツテ.ト	12. 4	1
	ト, ナ	4, 3	2		ナニ. ヌネノ	-3. 000	3
	<u>=</u>	1/4	3.		Л	1	2
-	<u>ネ</u>	8 3	1	-	ヒ. フヘ	4. 84	2.
	ニョ ネ ノ ア イ	8 3 3 2	2		アイ	50	2
-	ウ, エ	2, 3	2		ゥ	6	2
F	<u>オ</u> カ	3 2	1	-	I	8	2
第3問(20)	<u>カ</u> <u>キ</u> , ケ	9, 3	2		オ	0	2
	<u> コ</u> n サ	3n 2	1	第6問	カキクケ	2212	2
	<u>サ</u> シ	2	1	(20)	· 3	0	2
	<u>ス</u> セ	5 3	2		Ħ	3	2
	タ ソ	2	2	1	シ	2	2
	タ, チ	b, c	2		スセ	27	2
	ツ, テ	b, b	2	 	У	1	2
	ト, ナ, ニ	c, b, b	2	(注) 第1間, 第2間は必答, 第3問~第6間のうちから2月			
-	ヌ	3		選択,計4問を解答。			

(2) OPの中点は (2,1) であり
OPの垂直 = 等分線は 傾き - 2より y = -2(x-2) + 1 でから y = -2(x+5) - 0 $y = (x-\frac{13}{2}) - \frac{1}{2}$ であり、PQの垂直 = 等分解は 傾き 1より $y = (x-\frac{13}{2}) - \frac{1}{2}$ だから

 $y = x - \boxed{7} - \boxed{2}$

よって①②より -2X+5 = X-7 だから 3X = 12 X = 4

y=4-7=-3. となり中心は(4,-3)

また、円の年登は (0,0)と(4,-3)の距離より5

中之に 円 Cの式は (x-4)2+(y+3)2=25 となるサ シス

円には X=4に関いて対称だから Rは (8,0)となるから

RはOAを 4:1に外分する。

科各記号	EA)	配点
Pí	42	1
ウェオ	9-3	1
カキク	-25	3
ケ	7	2
フサ	43	3
シス	25	2
也	4	3
		5.5

$$\begin{cases} x+y+z=3 & -0 \\ 2^{x}+2^{y}+2^{z}=\frac{35}{2} & -2 \\ \frac{1}{2^{x}}+\frac{1}{2^{y}}+\frac{1}{2^{z}}=\frac{49}{16} & -3 \end{cases}$$

$$0 \text{ sn} \quad 2^{x+y+2} = 2^3 \text{ Teas}$$

$$2^x \cdot 2^y \cdot 2^z = 8 \text{ sn}$$

$$\times YZ = 8 \text{ sn}$$

$$2^{\frac{1}{2}\cdot 2^{\frac{3}{2}} + 2^{\frac{3}{2}\cdot 2^{\frac{3}{2}} + 2^{\frac{3}{2}\cdot 2^{\frac{3}{2}}}}{2^{\frac{3}{2}\cdot 2^{\frac{3}{2}} + 2^{\frac{3}{2}\cdot 2^{\frac{3}{2}}}} = \frac{49}{16} \text{ tens}$$

$$XY + YZ + ZX = \frac{49}{16} XYZ = \frac{49}{16} \times 8 = \boxed{\frac{49}{2}} - \text{ (6) } \text{ tens}$$

$$= t^{3} - (X+Y+Z)t^{2} + (XY+YZ+ZX)t - XYZ$$

$$= t^3 - \frac{35}{2}t^2 + \frac{49}{2}t - 8$$

$$= t^{3} - \frac{35}{2}t^{2} + \frac{49}{2}t - 8$$

$$= (t - \frac{1}{2})(t^{2} - 17t + 16)$$

$$= (t - \frac{1}{2})(t^{2} - 17t + 16)$$

$$= (t - \frac{1}{2})(t^{2} - 17t + 16)$$

$$= (t - \frac{1}{2})(t - 1)(t - 1)$$

$$= (t - \frac{1}{2})(t - 1)(t - 1) \cdot 2 \times 3$$

$$X = log_{\frac{1}{2}} = -1$$
 $X = log_{\frac{1}{2}} = -1$
 $X = log_{\frac{1}{2}} = 0$
 X

种态记号	正网	藤 尼东、
y	8	3
95")	492	3
テトナ	116	2
=	2	1
ヌネ	-1	2
,	0	2
/\	4	2
		15点

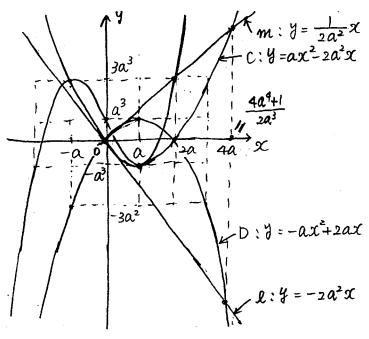
$$f(x) = x^{3} - 3\alpha^{2}x + \alpha^{3} + 11$$

$$f'(x) = 3x^{2} - 3\alpha^{2}$$

$$= 3(x+\alpha)(x-\alpha)$$

$$= 3(x+\alpha)(x-\alpha)$$

$$x = [-a] \text{ Tide the } x \in y, x = 0 \text{ for } x \in y, x =$$


$$(-a, 3a^3)$$
と $(a, -a^3)$ と $(0, 0)$ を通る放物線は
 $y = px^2 + gx$ とおけて
 $(a, -a^3)$ を通るから $-a^3 = pa^2 + ga$ 一①

$$(-a,3a^3)$$
を通るから $3a^3 = pa^2 - ga$ 一② かなりたつ

$$5.701 - a^3 = a^3 + 9a + 9$$

 $9a = -2a^3$

$$a \neq 0 \neq 0$$
 タ = $-2\alpha^2$ ら
よって Cの方程式は $y = [ax^2 - [2a]x (= ax(x-2a)) となるここで $y' = 2ax - 2a^2$ より$

またしに垂直な直線かは サー 豆肉の である

Cと X 軸 対称、な 数物線、D は D: $y = -ax^2 + 2a^2x$ で D と l の 文 座 框 は $-ax^2 + 2a^2x = -2a^2x$ より $-ax^2 + 4a^2x = 0$ -ax(x-4a) = 0 -ax(x-4a) =

またCとmの交点のX座標は

$$ax^{2}-2a^{2}x = \frac{1}{2a^{2}}x \quad 5^{v}$$

$$ax\left\{x-\left(2a+\frac{1}{2a^{3}}\right)\right\}=0$$

$$5.7 \quad x=0 \quad x=2a+\frac{1}{2a^{3}} = \frac{4a^{4}+1}{2a^{3}+1} \quad x = 3$$

$$T = -a \int_{0}^{\frac{4a+1}{2a^{3}}} 9(x - \frac{4a^{4}+1}{2a^{3}}) dx \quad £ S = -a \int_{0}^{4a} x(x-4a) dx \quad \text{of } f(x^{2}) dx$$

$$\frac{4a^4+1}{2a^3} = 4a \text{ or } 2 + 3 + 3 + 3$$

$$4a^{4} = 1$$
 $a^{4} = \frac{1}{4} = 0$
 $x = 0$
 $x = 0$

$$2062 S = T = \frac{32}{3} \alpha^4 = \frac{32}{3} \times \frac{1}{4} = \boxed{\frac{8}{3}}, 0625 c 533$$

醉各红号	正附	本公面
P1	-a	2
ウェ	33	3
オ	a	2
カキ	-3	3
クケコ	a22	3
サシス	-22	3
セソ	22	3
タチツテ	3234	5
トナ	4-3	2
ニヌ	14	3
ネノ	83	ł
		20.\$

(1)
$$P_{1}=3$$
, $P_{n+1}=\frac{1}{3}P_{n}+1-0$

①の両型から $\frac{3}{2}$ をひいて

 $P_{n+1}=\frac{3}{2}P_{n}+1-0$

$$\int_{R=1}^{9} \rho_{R} = \sum_{k=1}^{n} \left(\frac{1}{2 \cdot 3^{k-2}} + \frac{3}{2} \right)$$

$$= \frac{\frac{3}{2} \left\{ 1 - \left(\frac{1}{3} \right)^{n} \right\}}{1 - \frac{1}{3}} + \frac{3}{2} n$$

$$= \frac{9}{4} \left(1 - \frac{1}{3^{n}} \right) + \frac{3}{2} n$$

$$\begin{pmatrix} c = \frac{1}{3}C + 1 \\ \frac{9}{3}C = 1 \\ C = \frac{3}{2} \end{pmatrix}$$

科各記号	EM	高公东、
71	32	2
ウェ	23	2
オカ	32	1.
キクケ	943	2
コサ	32	1
シ	2	1
スセ	53	2
ソ	2	2
94	& C	2
ツテ	hb	2
トナニ	CLL	2
Z	3	1
		20 k,

(2)
$$0_4 = \frac{a_1 + a_2}{a_3} = \frac{3+3}{3} = 2$$

$$0_5 = \frac{a_2 + a_3}{a_4} = \frac{3+3}{2} = 3$$

$$0_6 = \frac{a_3 + a_4}{a_5} = \frac{3+2}{3} = \frac{5}{3} \approx 1$$

S,7 &n = Q2n-1 = 3 と推定できる これを教学的帰納法 図② で示す.

[1] m=10 22 li=le=3 tins lm+1=ln 11 47 to7.

[II] M=R のとき (Rは自然数) ピR+1=ピR - ⑤かいなりたつとすると

n=k+lのとき

$$a_{2k+3} = \frac{a_{2k} + a_{2k+1}}{a_{2k+2}} \quad (3)$$

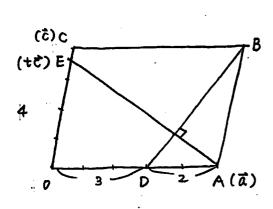
$$b_{k+2} = \frac{c_k + b_{k+1}}{c_{k+1}} \quad (6) \quad b_{k+1} = 3$$

$$Q_{2k+2} = \frac{Q_{2k-1} + Q_{2k}}{Q_{2k+1}} f''$$

$$C_{k+1} = \frac{g_{k} + C_{k}}{Q_{k+1}} - g_{k} f''_{k+1}$$

$$\frac{\partial \mathcal{E} \otimes 1 = 1 + 1}{2 + 2} = \frac{C_{R} + C_{R}}{2 + C_{R}} = \frac{C_{R} + C_{R}}{2 + C_{R}} = \frac{C_{R} + C_{R}}{2 + C_{R}}$$

$$\oint_{R+2} = \frac{(C_R + G_R) \cdot G_{R+1}}{G_{R+1} \cdot G_{R+1}} = U_{R+1} \cdot J_{r+1}^{-G_r} = U_{R+1}^{-G_r} = U_{R+1}$$


-ln = ln+1 1 = n=k+1 2 + &1 =2

よって すべての自然投で しゃ=3 はなりたつ

まに ②のれを2n-1 におきからてもなりたつから

$$Q_{2n+2} = \frac{Q_{2n-1} + Q_{2n}}{Q_{2n+1}} \quad \text{Tibil} \quad \text{Im} = Q_{2n-1} = 3 \text{ pl}$$

$$Q_{2n+2} = 1 + \frac{1}{3} Q_{2n} \quad \text{tibil}$$

(1)
$$\overrightarrow{AE} = \overrightarrow{tc} - \overrightarrow{a}$$

$$\overrightarrow{DB} = \overrightarrow{5} \overrightarrow{a} + \overrightarrow{c}$$

$$\overrightarrow{a} \cdot \overrightarrow{c} = 5 \times 4 \times \omega \times 0$$

$$= 20 \cos \theta$$

$$\overrightarrow{DE} = 0 \cot \theta$$

$$\overrightarrow{AE} \cdot \overrightarrow{DB} = 0 \cot \theta$$

$$(t\vec{c}-\vec{a})\cdot(\frac{2}{5}\vec{a}+\vec{c})=0 \ \vec{c}+\vec{b}$$

$$-\frac{2}{5}|\vec{a}|^2+(\frac{2}{5}t-1)\vec{a}\cdot\vec{c}+t|\vec{c}|^2=0$$

$$-\frac{2}{5}\times25+(\frac{2}{5}t-1)\times20 \ \omega \times0 +t\times16=0$$

(2) 点Eが 解分の上にあるとき

$$0 \leq \frac{5(2\cos\theta + 1)}{4(\cos\theta + 2)} \leq 1 \quad \vec{\tau}(\vec{b})$$

r= 608 とがくと 4(r+2) は正より

$$0 \le 5 (2(+1) + 1)$$
 $| 10r + 5 \le 4r + 8 + 1$
 $r \ge -\frac{1}{2}$ $| 6r \le 3$
 $r \le \frac{1}{2}$

$$\cos \theta = -\frac{1}{8} \cos \theta = \frac{1}{8} \cos \theta = \frac{1}{8}$$

2 \$302°

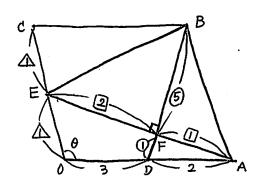
$$\overrightarrow{OF} = S\overrightarrow{a} + (I-S) \cdot \frac{1}{2} \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{b}$$

$$- \overrightarrow{O}$$

$$\begin{aligned}
&\exists t: \quad \overrightarrow{OF} = \overrightarrow{OD} + k \overrightarrow{DB} \\
&= \frac{3}{5} \overrightarrow{a} + k \left(\frac{2}{5} \overrightarrow{a} + \overrightarrow{c} \right) \\
&= \left(\frac{3}{5} + \frac{2}{5} k \right) \overrightarrow{a} + k \overrightarrow{C} - 2 \quad \text{Labits}
\end{aligned}$$

或+0,或+0,或水带 sy

$$S = \frac{3}{5} + \frac{1}{5} \times \frac{1}{5} (1-3) = 3$$


$$S = \frac{3}{5} + \frac{1}{5} - \frac{1}{5} S$$

$$S = \frac{4}{5} + \frac{1}{5} - \frac{3}{5} = \frac{3}{5}$$

Fit AE を 1:2 に内分する

平行四担代 OABCの 面徴 をSとすると S = 5×4×8mの

$$= 20 \sqrt{1 - (-\frac{1}{8})^2} + 20 \times \frac{3/7}{8} = \frac{15/7}{2}$$

$$S_{77} \triangle BEF$$
= $S - \triangle CBE - \triangle OAE - \triangle DAB$
+ $\triangle DAF$

= $S - \frac{1}{4}S - \frac{1}{4}S - \frac{1}{2} \times \frac{2}{5}S + \frac{1}{2} \times \frac{2}{5}S \times \frac{1}{6}$

= $S - \frac{1}{2}S - \frac{1}{5}S + \frac{1}{30}S$

= $\frac{30 - 15 - 6 + 1}{30}S$

= $\frac{1}{3}S$

所答記号	正月年	配点、
P1	25	2
ウエ	20	1
オ	Ď	1
カキクケ	5242	3
ב ·	3	2
サシ	23	2
スセ	۱2	1
ソタチツ	2316	3
テ	2	1
トナニヌ	1572	2
ネハ	572	2
		20,5