2011 センターⅡ B 追試験解答

問題 番号	解答記号	正解	配点
	ア	1	1
	1	6	1
	ウ	2	1
	工	5	1
	オカキ	-76	4
	クケ	7 2	2
1	コサシ	254	2
(30)	スセソ	5 1 2	3
	タチ	2 1	2
	ツテ	4 4	2
	トナ	6 1	2
	ニヌ	2 7	2
	ネ	1	2
	ノハ	2 2	2
	Ŀ	2	3
	アイウ	-20	2
	エ	3	2
	オカ	2 0	2
	+	2	2
	ク	2	4
(30)	ケコサシ	-816	3
(30)	スセソ	-42	2
	タチ	-8	3
	ツテ	-4	3
	トナ	-2	2
	ニヌ	6 7	5
	アイ	5 8	1
	ウエ	2 5	1
	オ	2	1
	カキ	1 1	2
	クケ	2 1	2
(20)	П	4	1
(20)	サ	1	1
	シスセ	3 4 1	3
	ソタチツテ	-2214	4
	トナ	2 1	2
	ニヌ	1 4	2
L		<u> </u>	1

問題 番号	解答記号	正解	配点
	ア	а	1
	イウ	3 4	2
	I	0	1
	オカ	2 3	2
_	+	0	1
4 (20)	クケ	1 2	2
(20)	コサ	1 3	2
	シ	1	1
	スセ	6 5	5
	ソタ	3 7	2
	チツ	1 9	1
	アイウ	1 3 0	2
	エオカキ	2330	1
	ク	6	1
	ケ	0	3
	コサシ	579	2
5	スセ	3 7	2
(20)	ソタチ	271	1
	ツテト	308	1
	ナ	2	1
	=	0	1
	ヌ	3	2
	ネ	0	3
	ア	5	2
	7	4	2
	ウ	2	2
	Н	9	2
	オカ	1 2	2
6 (20)	+	3	2
(20)	ク	3	2
	ケ	2	2
	П	5	2
	サシ	2 0	1
	スセ	2 3	1

$$-x^{2}+7x-6 \text{ id } x = \frac{7}{2}, \text{ 2'} ~ k \text{ if } \frac{25}{4} = \text{ 5} \text{ 5} \text{ 5}$$

$$1=7 \quad 2<\frac{3}{4}<5 \text{ 7'} ~ k \text{ if } \frac{25}{4} = \text{ 5} \text{ 5}$$

$$x = \frac{9}{2}, \text{ 1'} ~ \text{ U} = \log_{2}(6-\frac{9}{2}) = \log_{2}\frac{5}{2}$$

$$V = \log_{2}(\frac{9}{2}-1) = \log_{2}\frac{5}{2} \quad \text{1'} ~ \text{U} = \text{U} + \text{U}, \text{1}$$

$$(*) \text{ id 3} + \text{ 8} \text{ 8} \text{ 1}$$

中之に
$$\sqrt{uv} \le \frac{1}{2}(u+v) = \frac{1}{2}\log_2 \sqrt{-(x-\frac{7}{2})^2 + \frac{25}{4}} \sqrt{0}$$

最大値は
$$\frac{1}{2}\log_2(\frac{25}{4})$$

$$= \frac{1}{2}\log_2(\frac{5}{2})^2$$

$$= \log_2(\frac{5}{2})$$

$$= \log_2 5 - \log_2 2$$

$$= \log_2 5 - 1 \quad \text{ty}$$

Uかの最大値は $(\log_2 5 - 1)^2$ となる

附答記号	正解	₹.
7	1	1
ィウ	6	1
-	<u>2</u> 5	1
I	5	1
オカキ	-76	4
うケ	72	2
コサシ	254	2
スセソ	512	3

15.5.

$$tan 2\theta = \frac{2 tan \theta}{11 - tan^{2}\theta} \quad t^{**} 5 3 \circ 7^{**}$$

$$tan 4\theta = \frac{2 tan 2\theta}{1 - tan^{2}2\theta} = \frac{2 \times \frac{2 tan \theta}{1 - tan^{2}\theta}}{1 - \left(\frac{2 tan \theta}{1 - tan^{2}\theta}\right)^{2}} = \frac{4 tan \theta}{1 - tan^{2}\theta}$$

$$\frac{4 + tan \theta}{1 - tan^{2}\theta} = \frac{4 tan \theta}{(1 - tan^{2}\theta)^{2}} = \frac{4 tan \theta}{tan^{4}\theta - \left[6\right] tan^{2}\theta + \left[1\right]} = \frac{2}{2 tan^{4}\theta} = \frac{1}{2} tan \theta$$

$$\frac{-4 tan^{2}\theta + 4 tan \theta}{tan^{4}\theta - 6 tan^{2}\theta + 1} = \frac{1}{2} tan \theta \quad d^{4}\theta = \frac{1}{2} tan^{2}\theta + \frac{1}{2} tan^{2}\theta = \frac{1}{2} tan^{2}\theta - \frac{1}{2} tan^{2}\theta = \frac{1}{2} tan^{2}\theta + \frac{1}{2} tan^{2}\theta = \frac{1}{2} ta$$

 $P(x) = x^3 - (k+20)x - 2k = 0 の所 でまめる$

(1)
$$C: y = x^3 - 20x$$

l: 5= k(x+2) でしは たっ恒年式とみると y=0,9(=-2 I)

手に、 y= x3-20x において y'= 3x2-20だから

$$y = (3t^2 - 20)(x - t) + t^3 - 20t$$
 sy

この接線が (-2,0)を通るとすると

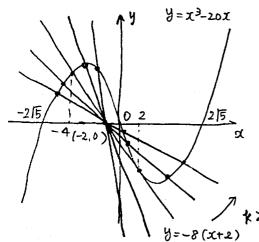
$$D = (3t^2 - 20) \times (-2) - 2t^3 \pm y$$

$$2t^{3}+6t^{2}-40=0$$

$$t^3 + 3t^2 - 20 = 0$$

$$(t-2)(t^2+5t+10)=0$$

Ans Cに Unto 接線は ①より


$$y = (3 \times 4 - 20)x - 2 \times 8$$

このとき ダ3-201=-8116をとくと

$$\chi^{3} - 12\chi + 16 = 0 \qquad 24 + 16 = 0$$

$$(\chi - 2)^{2}(\chi + 4) = 0 \qquad 21 + 2 = -8 + 0$$

よって接称とCの共有点の 1410

k=-8

k<-8

$$P(x) = x^3 - (k+20)x - 2k = 0$$
 の削け
Cとlの共有点の义座標であり

Cとしはただひとつの共有点をもつ

このともの共有点の父座標は

$$\left| \int_{1}^{2} |p(x) - (x^{3} - kx^{2} - 20x)| dx \right| = 1 dy$$

$$\left| \int_{1}^{2} (x^{3} - (k + 20)x - 2k) - (x^{3} - kx^{2} - 20x)| dx \right| = 1$$

$$\left| \int_{1}^{2} (kx^{2} - kx - 2k) dx \right| = 1$$

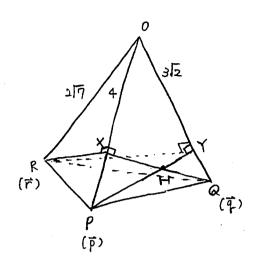
$$\left| k \int_{1}^{2} (x^{2} - x - 2) dx \right| = 1$$

$$\left| k \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x \right]_{1}^{2} \right| = 1$$

$$\left| k \left(\frac{8}{3} - \frac{4}{2} - 4 \right) - \left(\frac{1}{3} - \frac{1}{2} - 2 \right) \right| = 1$$

$$\left| k \left(\frac{7}{3} - \frac{3}{2} - 2 \right) \right| = 1$$

$$\left| k \times \frac{14 - 9 - 12}{6} \right| = 1$$


$$\left| -\frac{7}{6}k \right| = 1$$

1		
外谷化宁	EM	脱点
アイウ	-20	2
I	3	2
オカ	20	2
+	2	2
2	2	4
ケユサシ	-816	3
スセソ	-42	2
74	-8	3
ツテ	-4	3
トナ	-2	2
=3	67	5
		30,€

$$S_{3} = A_{1} + (A_{2} + A_{3}) = \frac{1}{2} + \frac{1}{2 \times 4} = \frac{4 + 1}{8} = \frac{5}{8} = \frac{7}{4}$$

$$S_{4} = (A_{1} + A_{2}) + (A_{3} + A_{4}) = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} = \frac{5 + 1}{15} = \frac{6}{15} = \frac{2}{5} = \frac{7}{15} = \frac{5 + 1}{15} = \frac{6}{15} = \frac{2}{5} = \frac{7}{15} = \frac{5 + 1}{15} = \frac{6}{15} = \frac{2}{15} = \frac{7}{15} =$$

センター追試数学 B解答		8 /	13 ページ
	解答記号	正序	百名克
5,7 Q2m = S2m - S2m-1	マイ	58	1
	ウエ	25	!
$= S_{2m} - S_{2(m-1)+1}$	オ カキ	<u>2</u> 1 1	2
$= \frac{m}{2m+1} - \frac{3(m-1)+2}{4 \times m}$	~ 7 ~	1 1 2	2
2m+1 4 × m	コ	4	1
$4m^2 - (2m+1)(3m-1)$	サ		1
$=\frac{4m(2m+1)}{}$	シスセ	34	3
12 -2m = 4 m + 11"	ソタチツテ		
$= \frac{\sqrt{2} - 2 m^{2} + 1}{4 m (2m + 1)}$	トナ	۱د ۱4	2 2
5	ニヌ		20/¥′
azm+1 = Szm+1 - Szm			20,17,
$=\frac{3m+2}{4(m+1)}-\frac{m}{2m+1}$			
$(3m+2)(2m+1) - m \times 4(m+1)$)		
4(m+1)(2m+1)			
$2m^2 + 3m + 2$			
$= \frac{4(m+1)(2m+1)}{2m+1}$: 5		•
	1		
$-\frac{1}{4}(8m^2+4m)+1$	$-\frac{1}{4}$ m $)-2m^2$		
$Q_{2m} = \frac{-\frac{1}{4}(8m^2 + 4m) + 1}{8m^2 + 4m}$ $8m^2 + 4m$		- m + 1	
		1.	•
$= -\frac{1}{4} + \frac{1}{8m^2 + 4m}$			
1			•
$= \frac{1}{2 \cdot 2m + 2 \cdot 4m^2} - \frac{1}{4} + \frac{1}{4}$			
$\alpha_m = \frac{1}{2n+2n^2} - \frac{1}{4}$			
$=\frac{1}{2n(n+1)}-\frac{1}{4}$	4	12+3m+	
2n(n+1) T &m ²		1-+3m+	2 - 1
$\frac{1}{2}$ (2m ² +12m+4) + 1			1
$\Re T = \frac{\frac{1}{4}(8m^2+12m+4)+1}{8m^2+12m+4}$			
• • • • • •			
$= \frac{1}{4} + \frac{1}{2(2m+2)(2m+1)} + 5$			
$a_m = \frac{1}{4} + \frac{1}{2(n+1)*n} - 2$			
DO 27 an = 1 (1) + (1) + 63			
$\mathbb{D} \mathfrak{S}^{n} = \frac{1}{\mathbb{Q}^{n}(n+1)} + \frac{(-1)^{n+1}}{\mathbb{H}} \times \mathcal{S}^{n}$			
トナマ			

 $\overrightarrow{RX} \cdot \overrightarrow{OP} = (\overrightarrow{OX} - \overrightarrow{OR}) \cdot \overrightarrow{OP}$

= (3p-r)·p

$$\overrightarrow{OX} = \overrightarrow{a}\overrightarrow{p} \circ \overrightarrow{c} \overrightarrow{z}$$

$$\overrightarrow{QX} = \overrightarrow{OX} - \overrightarrow{OQ}$$

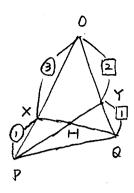
$$= \overrightarrow{QP} - \overrightarrow{Q}$$

$$\overrightarrow{P} = \overrightarrow{QX} + \overrightarrow{OP} + y$$

$$\overrightarrow{QX} \cdot \overrightarrow{OP} = 0 \overrightarrow{C} \Rightarrow \overrightarrow{y}$$

$$(\overrightarrow{aP} - \overrightarrow{Q}) \cdot \overrightarrow{P} = 0 + y$$

$$\overrightarrow{a|P|^2} - \overrightarrow{P} \cdot \overrightarrow{Q} = 0$$

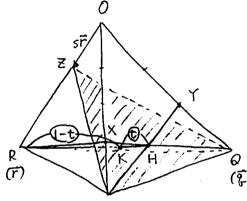

$$\overrightarrow{a|P|^2} - \overrightarrow{P} \cdot \overrightarrow{Q} = 0$$

$$\overrightarrow{a|P|^2} - \overrightarrow{P} \cdot \overrightarrow{Q} = 0$$

$$\overrightarrow{a|P|^2} - \overrightarrow{A|P|^2} = 0$$

$$= \frac{3}{4}|\vec{p}|^{2} - \vec{r} \cdot \vec{p}$$

$$= \frac{3}{4} \times \frac{1}{1} \times \frac{1}$$



メネラウスの定理 をつかうと

$$\frac{OQ}{QY} \cdot \frac{YH}{HP} \cdot \frac{PX}{XO} = 1 \text{ sy}$$

$$\frac{3}{1} \times \frac{YH}{HP} \times \frac{1}{3} = 1 \text{ Tens}$$

$$J_{57} \overrightarrow{OH} = \frac{\overrightarrow{OP} + \overrightarrow{OY}}{2} = \frac{1}{2} \left(\overrightarrow{P} + \frac{2}{3} \overrightarrow{Q} \right)$$
$$= \underbrace{1}_{7} \overrightarrow{P} + \underbrace{1}_{3} \overrightarrow{Q}$$

Kは RHを l-t:tに内分する点

たから ここ

$$\overrightarrow{OK} = (1-t)\overrightarrow{OH} + t\overrightarrow{OR}$$

$$= (1-t)(\frac{1}{2}\overrightarrow{P} + \frac{1}{3}\overrightarrow{F}) + t\overrightarrow{r} - 0$$

P KITFE PQZ L 2')

$$(\vec{p})$$
 $\vec{O}\vec{k} = \vec{O}\vec{P} + k\vec{P}\vec{Z} + l\vec{P}\vec{Q}$
 $= \vec{P} + k(\vec{S}\vec{r} - \vec{P}) + l(\vec{g} - \vec{P})$
 $= (1 - k - l)\vec{p} + l\vec{q} + k\vec{S}\vec{r} - 2\vec{z} + \delta\vec{A}$

$$\int (1-t)x \frac{1}{2} = 1-k-l - 2$$

$$(1-t)x \frac{1}{3} = l - 4$$

$$t = ks - 5 \text{ if since 7.}$$

$$(6-59)t = S$$

$$\vec{PZ} \perp \vec{OR} = 0 \quad \vec{E}y$$

$$(\vec{OZ} - \vec{OP}) \cdot \vec{OR} = 0 \quad \vec{E}y$$

$$(\vec{OZ} - \vec{OP}) \cdot \vec{OR} = 0 \quad \vec{E}y$$

$$(\vec{SP} - \vec{P}) \cdot \vec{P} = 0$$

$$\vec{S|P|^2} - \vec{P} \cdot \vec{P} = 0$$

$$\vec{S|P|^2} - 12 = 0$$

$$\vec{S} = \frac{12}{28} = \frac{3}{7} \quad \frac{7}{9}$$

$$\vec{E} = \frac{\vec{S}}{6 - 5\vec{S}} = \frac{3}{6 - 5 \times \frac{3}{7}} = \frac{3}{42 - 15} = \frac{3}{27} = \frac{1}{9} \quad \frac{4}{9} \quad \frac{4$$

新本記号	正的	配点
P	a	1
イウ	·34	2
I	0	1
オカ	23	2
#	0	1
クケ	12	2
コサ	13	2
>	i	1
スセ	65	5
79	37	2
チツ	19	1
		20%

20次

$$\frac{0.3+0.5+0.7+1.0+1.3+1.5+1.6+1.7+2.1+2.3}{10} = \frac{13.0}{10} = \boxed{1.3.0}$$

よって 又の早切は 23、30 Cである エオカキ

(2) AとB は 最低気温 か 6 種 同じてある
のこった 4組について (平均との是)²の和 を不めると

AIT
$$(22.7 - 23.3)^{2} + (23.0 - 23.3)^{2} + (23.6 - 23.3)^{2} + (24.1 - 23.3)^{2}$$

= $(-0.6)^{2} + (-0.3)^{2} + (0.8)^{2}$
= $0.36 + 0.09 + 0.09 + 0.64$
= 1.18

Aの最低気温の分散は、Bの分散はり小さい ケの

(3) Aの最高気温の平均が 31,20°C より、31,20 との差で平均をとると $O = \frac{(D-31,2) + 316 + 1,4 + (-2,8) + 2,4 + (-0,2) + 0,2 + 1,9 + (-2) + (E-31,2)}{10}$

D+E + 4.5-62.4 = 0
$$D+E = 157.9 - 0$$

		EA
解答記号	E PH	配点
アィウ	130	2
工材力中	2330	1
7	6	1
ケ	0	3
コサシ	579	2
スセ	з 7	2
79 9	271	1
ツテト	308	1
ナ	2	t
=	0 3	1
ヌ	3	2
ネ	٥	3
		20, 5 ,

		(x=23.30)		$(\sqrt{8}=31.20)$		•
Α	x	1- 1	y	4-3	(x-x)(y-y)	$w = \beta - x$
	223	-1.0	D=27.1	D-31,2	- (D-31.2)	4.8
	22,5	-0.8	34.8	3,6	- 2.88	12, 3
	22.7	-0,6	32.6	1,4	-0.84	9.9
	23.0	-0.3	28,4	-2.8	0.84	5, 4
	23.3	0	33.6	2.4	0	10.3
	23,5	0,2	31.0	-0,2	-0.04	7.5
	23, 6	0.3	31.4	0,2	0.06	7.8
	23.7	0,4	33.1	1.9	0.76	9,4
	24.1	0.8	29,2	0,2-	-1,60	5.1
	24.3	1.0	E = 30.8	E-31,2	E-31.2.	6,5

(f) スとWの租間回は (x,w)=(22,3,4,8),(22,5,12,3)を介で、

タといの相関図は (4,w)= (27,1,4,8) をみて 〇二.

(5) Aの | x-又 と Bの | y-3| をせれると | y-7|の方が大きいので よの最高気温の方が大きい。 ③の「最高気温が高いほど" | 日の気温差が大きい」のが正しい。