第1問〔1〕

$$(x+n)(n+5-x) = (x+n) \mid n+(5-x) \mid$$

$$= x(5-x) + nx + n(5-x) + n^{2}$$

$$= x(5-x) + n^{2} + \frac{1}{5}n + \frac{1}{5}n^{5}$$

$$X = x(5-x) + \frac{1}{5}n^{5}$$

$$(x+n)(n+5-x) = x + n^{2} + 5n + s^{4}$$

$$(x+n)(n+5-x) = x + n^{2} + 5n + s^{4}$$

$$x = x(5-x) = x + n^{2} + 5n + s^{4}$$

$$x = x(5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$x = x(1)(n+5-x) = x + 1^{2} + 5n + s^{4}$$

$$A = X (X+6)(X+14) = 2 \times 8 \times 16$$

$$= 2 \times 2^{3} \times 2^{4} = 2^{\boxed{8}^{1}} \times 3^{3} \times 3^{4} = 2^{\boxed{8}^{1}} \times 3^{2} \times 3^{4} = 2^{\boxed{8}^{1}} \times 3^{2} \times 3^{4} \times$$

神谷部号	正阳	西之点、
ア	5	2
イウェ	614	4
オ	2	2
カ	8	2
		10%.

A = { 1,2,4,5,10,20 }

 $B = \{3, 6, 9, 12, 15, 18\}$

C = {2,4,6,8,10,12,14,16,18,20} 7"3302"

ACC はなりたにない

A N B = Ø はなりたつ、 中之に 国は ②

(AUC) NB = CNB = 16,12,189 IFELM,
(ADB= 959)

財を記号 正解 配点 キ 2 3 フ 0 3

\$10 Anc = 16,8,12,14,16,184 € NS

(Anc) UB = } 3.6,8,9,12,14,15,16,189

BUC = 12,3,4,6,8,9,10,12,14,15,16,18,209 temb

An (BUC) = {3,6,8,9,12,14,15,16,18} xy

(Anc)UB = An(BUC) ILELM. IT DIE

P: |x-2| >2 it

X-2<-2,2< X-2 より すべての型 に2をたして

X < 0 or 4 < x

8:x<0

r: x>4

S: 1x2 > 4 17 |x1 > 4

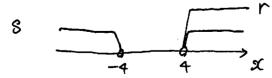
|x|>4 24 x4 x<-4 or 4<x

科各記号 正解 配点 ケ 2 2 コ 0 2 4点

よって gateはrの欠の範囲は

X<0 or 4<X · となって Pと同値

よって 四は② 必要+分条件



また トラ 8 かなりたつので とであるためには

5の種間に入っていることが必要.

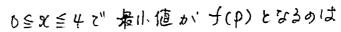
よって コ は 火要条件.

$$f(x) = ax^2 - 2(a+3)x - 3a+21 + 4$$

 $x = 0 \quad x = 4$ $x = 1 + \frac{3}{0}$

D ≤ x ≤ 4で y=f(x)の最小値がf(4)となるのは

aは正より 雨巴に aをかけて a≦1.



$$0 \le 1 + \frac{3}{\alpha} \le 4 \quad \text{or} \quad \text{the sum of } \quad \text{or} \quad \text{or}$$

aは正より $0 \le 1 + \frac{3}{a}$ 1 π 目月らかになりたち、

$$1 + \frac{3}{\alpha} \le 4 \le 9$$

$$\frac{3}{\alpha} \le 3$$

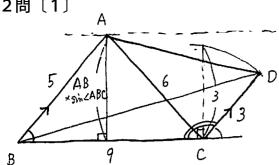
$$\frac{1}{\alpha} \le 1$$

aは正より 両辺に Qをかけて □ミ a.

車が $x=1+\frac{3}{a} > 1$ より f(0) が最小値にはならない = 20 ようになる場合はない = 2 = 4 = 4

- 13谷楠	正例书	成之底
サシ	ι 3	2
ス	1	2
セ	1	2
79	45	2
チッラト	7134	2
		10点

第2問〔1〕



$$\omega S \angle ABC = \frac{5^{2} + 9^{2} - 6^{2}}{2 \times 5 \times 9} = \frac{25 + 81 - 36}{90} = \frac{70}{90} = \frac{7}{9} \frac{7}{4}$$

$$\sin \angle ABC = \sqrt{1 - (\frac{7}{9})^{2}} = \sqrt{\frac{81 - 49}{81}} = \frac{\sqrt{32}}{9} = \frac{4\sqrt{2}}{9} \frac{7}{4}$$

$$AB \cdot \sin \angle ABC = 5 \times \frac{4\sqrt{5}}{9} > \frac{20 \times 1 \cdot 4}{9} = \frac{28}{9} > 3 = CD \pm 9$$

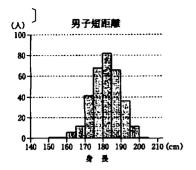
したがって ∠ABC + ∠BCD =
$$180^{\circ}$$
 とびるのら

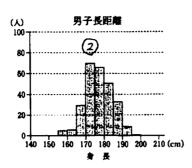
 $\omega s \angle BCD = \omega s \left(180^{\circ} - \angle ABC\right) = -\omega s \angle ABC = -\frac{7}{9}$ より

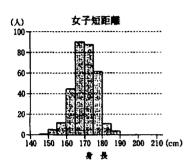
△BCDで 余弦定理から $BD^{2} = 9^{2} + 3^{2} - 2 \times 9 \times 3 \times \omega s \angle BCD$
 $= 81 + 9 - 2 \times 9 \times 3 \times (-\frac{7}{9})$
 $= 90 + 42$
 $= 132$
 $577 BD = 2\sqrt{33} \times 763$

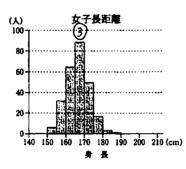
神智記号	正序	किटाई.
アイ	79	3
ウェオ	429	3
カキ	04	5
クケコ	233	4
		15.5

[2









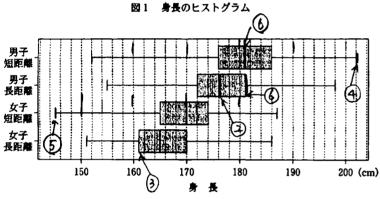


図2 身長の箱ひげ図

(出典:図1、図2はガーディアン社のWebページにより作成)

⑩ 四つのグループのうちで範囲が最も大きいのは、女子短距離グループである。

男子短距離の範囲 が 50 _. 女子短距離の範囲 は 40~44の間 なので ×

① 四つのグループのすべてにおいて、四分位範囲は12未満である。

これは正しい (はこひげ図から)

② 男子長距離グループのヒストグラムでは、度数最大の階級に中央値が 入っている。

> 度数最大の階級は 170~175 中央値は はこひげ回より 176 よって ×

③ 女子長距離グループのヒストグラムでは、度数最大の階級に第1四分 位数が入っている。

> 度数最大の階級は 165~170 第1四分位級は はこひげ凹より 160~162

5,2 X

④ すべての選手の中で最も身長の高い選手は、男子長距離グループの中 にいる。

> 最も身をか高い送手は はこひげ図より男子短距離。 よってX

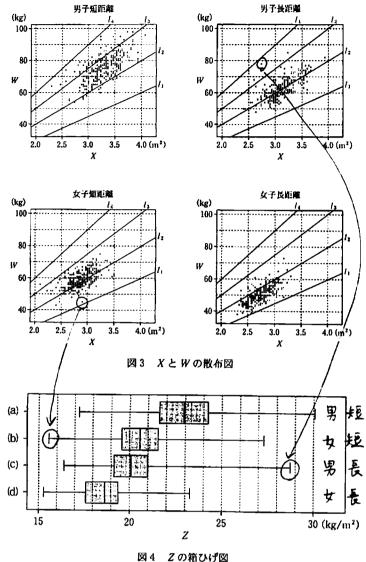
⑤ すべての選手の中で最も身長の低い選手は、女子長距離グループの中 にいる。

> 最も身長が低い選手は はこひげ図より女子短距離 よって×

⑥ 男子短距離グループの中央値と男子長距離グループの第3四分位数は、ともに180以上182未満である。

はこひげ図より正しい

よって 正しいのは ①と⑥



凶4 2 の相の行凶

(出典:図3、図4はガーディアン社の Web ページにより作成)

科各記号	正阳	₽5.€.
サシ	16	各3
スセ	45 (54)	& 3
		6.8.

@ 四つのグループのすべてにおいて、 $X \ge W$ には負の相関がある。

がうつの散布図 はずべて右よがりなので すべて正の租間となっているので X

① 四つのグループのうちでZの中央値が一番大きいのは、男子長距離グループである。

マ= W なので 見の 傾きが ととなる
男子長距離は 見2 あたりにたくさんの
データかあるが、明らかに
男子短距離の方が 見3寄りにデータか
ある、よって との 中央値が 一番大きいのは
男子短距離 であるから ×

- (a) は男子短距離
- (d) は女子吾距離 し4 号りにある点を見ると
- (c) か男子最距離
- (む)が女子短距離となる
- ② 四つのグループのうちで2の範囲が最小なのは、男子長距離グループである。

図4から zの範囲が最小なのは 女子長距離なので×

③ 四つのグループのうちでZの四分位範囲が最小なのは、男子短距離 グループである。

図4からはこひげ図のその四分位範囲は 明らかに男子短距離はが一番大きいから × (a)

④ 女子長距離グループのすべての2の値は25より小さい。

図4の(d) が女子長距離なので さは25よりすべて小さいところにあり、正い、

⑤ 男子長距離グループの2の箱ひげ図は(C)である。

見4時りにある最大値をみて 図4の(c)は男子長距離で正しい。

以上のことから区包は金とり

$$(x_1-\overline{x})(w_1-\overline{w})+(x_2-\overline{x})(w_2-\overline{w})+\cdots+(x_n-\overline{x})(w_n-\overline{w})$$

=
$$\chi_1 w_1 + \chi_2 w_2 + \cdots + \chi_n w_n - \overline{\chi} (w_1 + w_2 + \cdots + w_n)$$

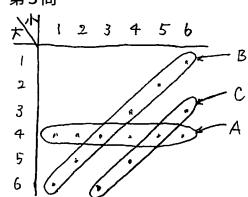
 $-\overline{w} (\chi_1 + \chi_2 + \cdots + \chi_n) + n \overline{\chi} \overline{w}$

$$= \chi_1 w_1 + \chi_2 w_2 + \cdots + \chi_n w_n - \tilde{\chi} (w_1 + w_2 + \cdots + w_n) - \tilde{\eta} \tilde{\chi} \tilde{w} + \tilde{\eta} \tilde{\chi} \tilde{w}$$

所答だち	正解	西巴东
y	2	3 k

$$\begin{pmatrix} \chi_1 + \chi_2 + \dots + \chi_m = m\overline{\chi} \\ w_1 + W_2 + \dots + W_m = m\overline{W} \end{pmatrix}$$

第3問



左回りように考える

(1) 全体は3b通り、A,B,C は それぞれ6,6,4通りある。 AnBは1通り、AnCは1通り BnCは0通り AnBnCも0通りである

5-7
$$P(A) = \frac{6}{36} = \boxed{\frac{1}{6}} P$$
, $P(B) = \frac{6}{36} = \boxed{\frac{1}{6}} P$, $P(c) = \frac{4}{36} = \boxed{\frac{1}{9}} P$

(2) CがおこったときのAがおころを作す
$$P_c(A)$$
 は
$$P_c(A) = \frac{P(cnA)}{P(c)} = \frac{\frac{1}{36}}{\frac{4}{36}} = \begin{bmatrix} 1 & * \\ 4 & 2 \end{bmatrix}$$

Aかおこったときの Cかおこる確率
$$P_A(c)$$
 は $P_A(c) = \frac{P(A \cap C)}{P(A)} = \frac{36}{6} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ プ

(3)
$$P(A \cap B) = \frac{1}{36}$$
, $P(A) \cdot P(B) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ \$1)

$$P(A \cap B) = P(A) \cdot P(B) \qquad 507 \quad \boxed{4} \quad 11 \quad \boxed{0}$$

$$P(A \cap C) = \frac{1}{36} , \quad P(A) \cdot P(C) = \frac{1}{6} \times \frac{1}{9} = \frac{1}{54} \times \frac{1}{9}$$

$$P(A \cap C) > P(A) \cdot P(C) \qquad 507 \quad \boxed{5} \quad 12 \quad \boxed{2}$$

(4) IDEL ** AOB, 208: AOC 643 7 4 36
$$\times$$
 36 \times 36 \times 12 \times 13 \times 12 \times 13 \times 12 \times 13 \times 14 \times 15 \times 15 \times 16 \times 17 \times 17 \times 17 \times 18 \times 18 \times 18 \times 19 \times 19

2回でA,B.Cかちょうど1回ずっおこる場合は、BとCは同時におこらないことを考えると

(i) 1回目 AOB, 2回目 AOC のとき、
$$\frac{1}{36} \times \frac{3}{36} = \frac{3}{64}$$
(ii) 1回目 AOC, 2回目 AOB のとき $\frac{3}{36} \times \frac{1}{36} = \frac{3}{64}$
(iii) 1回目 AOC, 2回目 AOB のとき $\frac{1}{36} \times \frac{5}{36} = \frac{5}{64}$
(iv) 1回目 AOB, 2回目 AOC のとき $\frac{5}{36} \times \frac{1}{36} = \frac{5}{64}$
(iv) 1回目 AOB, 2回目 AOC のとき $\frac{5}{36} \times \frac{1}{36} = \frac{5}{64}$
 $\frac{3}{64} \times \frac{3}{64} + \frac{3}{64} + \frac{5}{64} + \frac{5}{64}$

$$= \frac{16}{64}$$

$$= \frac{24}{94 \times 34} = \frac{1}{34} = \frac{1}{91} \xrightarrow{97}$$

醉答此号	正的	क्तर,ई.
P1	16	2
ウェ	16	2
オカ	19	2
キク	14	2
ケコ	16	2
サ	1	2
シ	2	2
ZEY9	1432	3
チツテ	181	3
		20 %

a=144, b=7 = 7 = +3 E

①の整数解の1つは X=2, 4=41

①-⑤より
$$144(x-2)-7(y-41)=0$$
から $144(x-2)=7(y-41)$ $144 (x-2)=7(y-41)$ $144 と 7 は 互 ひに 真より R を登 校として) $x-2=7k$ $y-41=144k$ かなりにつので$

よって めの絶対値が振りとなる登録的は

$$\mathfrak{I} = 2$$
, $\mathfrak{I} = 41$

すべての整数船は

$$X = \sqrt{7}k + 2$$

$$7$$

$$Y = \sqrt{44}k + 41 \quad \text{2.43}$$

$$3 + 2$$

(3) n=144x=74+1 の整設所は144の倍設で、7でわったら1余3自然放れを 表すので144x-74=1-①をみたす

①の解は x = 7k + 2 (kは登飯) より $n = 144 \times (7k + 2)$ $n = 24 \times 3^2 \times (7k + 2)$ -6 をみたす

正の粉散の個数が18個となる最小ののは

R = 0 を代入したとき $n = 2^5 \times 3^2$ で 正の約款 $6 \times 3 = 18$ (個)より 2 は2 となる

また R=1 $7'' <math>N=2^4 \times 3^2 \times 9 = 2^4 \times 3^4 7''$ 粉故 $5 \times 5 = 25$ (1回) k=2 $7'' N=2^4 \times 3^2 \times 16 = 2^8 \times 3^2 7''$ 粉牧 $9 \times 3 = 27$ (1回) k=3 $7'' N=2^4 \times 3^2 \times 23$ 7'' 約找 $5 \times 3 \times 2 = 30$ 1回

よって 正の約数の個数が 30個で最小のりは

 $n = 144 \times 23$ = 23

科各配号	正解	配点
マイウ	432	3.
エオ	15	3
カ	2	2
キク	41	ع
5	7	2
コサシ	144	2
ス	2	3
セソ	23	3

20点

かる紹介

アイウ

エオカ

キクケ

コサ

シス

セソ

EM Dea

253

109

04

58

53

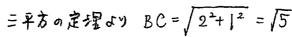
209 3

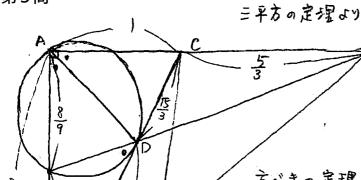
4

3

2

201





<u> 215</u> 3

内由二等分線の性質とり

AB: AC = BD: DC = 2: 1 Tobs

$$BD = \left(\frac{2/5}{3}\right) \begin{array}{c} 74 \\ 5 \end{array}$$

方べきの定理より

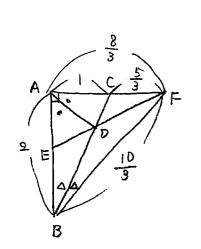
$$AB \cdot BE = BD^2 = \left(\frac{2\sqrt{5}}{3}\right)^2 = \frac{4\times 5}{9} = \boxed{\frac{20}{9}} \pi \quad \text{Theorem}$$

$$2 \cdot BE = \frac{20}{9} \text{ Jy } BE = \left[\frac{10}{9}\right]^{\frac{2}{7}}$$

$$\frac{BE}{BD} = \frac{70.5}{\sqrt{25}} = \frac{5}{315} = \frac{5}{3} = \frac{5/5}{15}$$

$$\frac{AB}{BC} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = \frac{6\sqrt{5}}{15} + 9$$

よって ACLDEの交点は UACの C個りにある



AC:
$$CF = 3:5$$

 $42: CF = AC \times \frac{5}{3} = 1 \times \frac{5}{3} = \frac{5}{3} \times \frac{5}{3} = \frac{5}{3} \times \frac{5}{3} \times$

$$57 BF = \sqrt{AB^2 + AF^2} = \sqrt{2^2 + (\frac{8}{3})^2}$$

$$= \sqrt{4 + \frac{64}{9}} = \sqrt{\frac{100}{9}} = \frac{10}{3} 7509$$

AB (BF = AC : CF = 1 : 3 +)

BCは<ABFの内内二等分線

Bra ADはCBAFの内角=等分配より DI DADFO 内心とよる