2007センター追試数学 B解答
 1 / 9 ページ

2007センター追試数学ⅡB解答

左 1	88	()	\sim	F /
弗 1	. 问	(3	U	思力

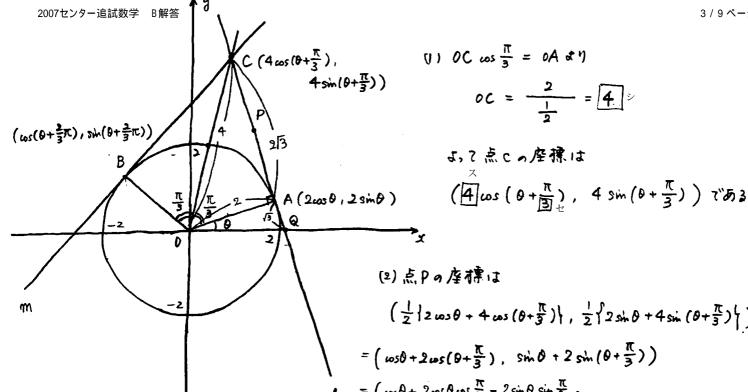
解答記号	正解	配点
アイウ	2 5 1	3
エオカ	- 1 5	3
キク	3 3	3
ケコサ	- 1 2	3
シ	4	2
ス	4	2
セ	3	2
ソタ	2 3	4
チツ	7 7	4
テトナ	4 2 1	4

第3問(20点)

解答記号	正解	配点
アイ	1 4	2
ウ	3	2
エ	2	2
オカキ	2 3 1	4
クケ	3 2	3
コサ	3 2	3
シスセソ	3 4 9 1	3
タチ	1 2	1

第2問(30点)

解答記号	正解	配点
アイ	2 1	5
ウ	0	2
エ	0	2
オカ	4 3	4
+	а	2
クケコ	2 a 2	2
サシスセ	-112	4
ソタチ	1 2 a	5
ツテトナニ	163a1	4


第4問(20点)

解答記号	正解	配点
アイウエ	6 a 9 3	3
	または69a3	
オカキ	2 3 1	2
ク	6	2
ケコサ	4 5 2	2
シスセ	8 1 6	2
ソタ	3 7	2
チ	0	1
ツテト	3 7 2	3
ナニヌネノハ	7 3 2 7 3 2	3

(1)
$$5p^{x} - \frac{1}{px} = 9(p^{x} + \frac{1}{px})$$
 の两辺 p^{x} をかけて
 $5(p^{x})^{2} - 1 = 9((p^{x})^{2} + 1)$ より
 $p^{px}([5] - 9) = [1] + 9 - [1]$
 $p^{2x} > 0$ より $5 - 9 + 1 + 9$ が 同符号 であればよいから
 $5 - 9 + 1 + 9 = 9$ が 正となるので
 $(5 - 9)(1 + 9) > 0$ より
 $-(9 - 5)(9 + 1) > 0$
 $1 - 1 < 9 < 5 = 1$ である
 $1 - 1 < 9 < 5 = 1$

(2)
$$\rho = 3$$
, $g = \frac{1}{2}$ or $\xi \in \mathbb{D}$ $f = 3$, $g = \frac{1}{2}$ or $\xi \in \mathbb{D}$ $f = 3$, $g = \frac{1}{2}$ $f = 3$, $g = \frac{3}{2}$ $f = 3$, $g = \frac{3}{2}$ $g = \frac{3}{2}$ $g = \frac{3}{2}$ $g = \frac{1}{3}$ $g = \frac{1$

神多記古	ĒM4	配点
アイウ	251	3
エオカ	-15	3
キク	3 3	3
ケコサ	-12	3
		125

$$\int \sin \theta = \frac{\sqrt{3}}{\sqrt{7}} = \frac{\sqrt{21}}{7}$$

$$\cos \theta = \frac{2}{\sqrt{7}} = \frac{2\sqrt{7}}{7} \quad \text{i.s.}$$

$$\sin \theta = \frac{\sqrt{3}}{\sqrt{7}} = \frac{2\sqrt{7}}{7}$$

$$\sin \theta = \frac{2\sqrt{7}}{7} = \frac{2\sqrt{7}}{7} = \frac{\sqrt{21}}{7} + \frac{2\sqrt{21}}{7} = \frac{2\sqrt{21}}{7} = \frac{2\sqrt{21}}{7} + \frac{2\sqrt{21}}{7} = \frac{2$$

$$f(x) = (x+1) \left\{ x^2 - (3a-2) x + 2a(a-1) \right\} \qquad \left\{ x - 2(a-1) \right\}$$

$$= (x+1) (x-a) \left\{ x - (2a-2) \right\} \qquad z^* = 3$$

$$f(x) = x^{3} + (1-a - (2a-2))x^{2} + (-a+a(2a-2) - (2a-2))x + a(2a-2)$$

$$= x^{3} + (-3a+3)x^{2} + (2a^{2} - 5a + 2)x + 2a^{2} - 2a$$

$$753$$

$$5.7 \ f'(\alpha) = 3x^2 + 2(-3a+3)x + (2a^2-5a+2) \ \ \, 49$$

$$f'(-1) = 3 - 2(-3a+3) + 2a^2 - 5a+2$$

$$= 2a^2 + a - 1$$

(別開) 積の毎関数の公式より

$$f(x) = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / 0x = 0$$

$$f'(x) = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

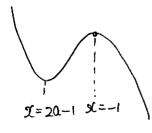
$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

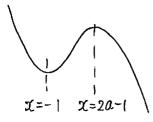
$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (3a-2)x + 2a(a-1) / + (x+1) / 2x - (3a-2) / 0$$

$$f_{3} = (x+1) / x^{2} - (x+1) / x + 2a(a-1) /$$

$$g(x) = (2a^{2}+a-1)(x+1) - f(x) \notin \exists \xi$$


$$g'(x) = (2a^{2}+a-1) - \begin{cases} 3x^{2}+2(-3a+3)x + (2a^{2}-5a+2) \end{cases}$$

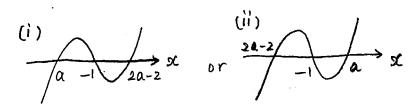

$$= -3x^{2}+6(a-1)x + 6a-3$$

$$= -3 \end{cases} x^{2}-2(a-1)x - (2a-1) \end{cases}$$

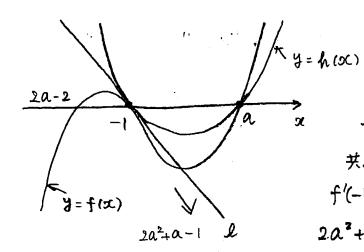
$$= -3(x+1) \end{cases} x - (2a-1)$$

(i) 2a-1 < -1 のとき、つまり a < 0 のとき を大値は g(-1) = 0 エ

整大値は
$$g(2a-1) = (2a^2+a-1) \times (2a-1+1) - f(2a-1)$$


$$= (2a^2+a-1) \times 2a - (2a-1+1)(2a-1-a) \times \{(2a-1)-(2a-2)\}$$

$$= (2a^2+a-1) \times 2a - 2a(a-1) \times 1$$


$$= 2a \{(2a^2+a-1)-(a-1)\}$$

$$= 4a^{3/2}$$

f(x) = (x+1)(x-a) / x - (2a-2) / xyリ=f(z)と文軸との共有点は(-1,0),(a,0),(20-2,0)である (-1,0)が他の2点の中間のとき

20-2<-/ 0<-1<20-2 (a<-1 m) -1<2a-2) = reit (2a-2<-1 m) -1<a) $\left(\alpha < -1 \text{ his } \alpha > \frac{1}{2}\right) \neq \text{ tit } \left(\alpha < \frac{1}{2} \text{ his } -1 < \alpha\right)$ よって 山の時合の 一下へへ 2004である

市的3校物段生人(工)は

h(x) = k(x+1)(x-a) + bit3.

4'(x) = k { 1 x (x-a) + (x+1) x 1 9 z" sy

共画榜様 1をもつから

$$(2a-1)(a+1) = -k(a+1)$$

$$a + -1 = -k$$

中記に h(oc) = (11-2a) (x+1)(x-a) となる

£25	$I = \int_{-1}^{3} h(x) dx$
	$= \int_{-1}^{0} (1-2a)(x+1)(x-a) dx$
	$= (1-2a) \int_{-1}^{0} (x+1)^{2} (x+1) - (a+1)^{2} dx$
	= $(1-2a)\int_{-1}^{0} \{(x+1)^{2} - (a+1)(x+1)\} dx$
	$= (1-2a) \left[\frac{1}{3} (x+1)^3 - (a+1) \times \frac{1}{2} (x+1) \right]_{-1}^{0}$
	$= (1-2a) \times \left\{ \frac{1}{3} - (a+1) \times \frac{1}{2} \right\} $ $= \frac{1}{6} (1-2a) \left\{ 2 - 3(a+1) \right\} = -\left[\frac{1}{6} (1-2a) \left(\frac{3a}{2a} \right) \right] $
	$= \frac{1}{1000} \left(\frac{1-2a}{1000} \right) = \frac{1}{6} \left(\frac{1-2a}{1000} \right) \left(\frac{8a}{1000} \right)$

	_	
醉答記号	正确	配点、
P1	2	5
Ϋ́	D	2
エ	0	2
オカ	43	4
+	a	2
クケコ	202	2
サシスセ	-112	4
49 1	120	5
ツテトナニ	163a1	4
		30点

(1)
$$a_5 = b_2 s_1$$
 $a+4d = ar$ $s, 7$ $4d = ar - a, s_1$

$$d = \frac{a(r-1)}{4} r b_3 - 0$$

$$251: a_{17} = d_3 t f_3 t a + 16d = ar^2 r b_1 0 f_1$$

$$a_{16} \times \frac{a(r-1)}{4} = ar^2$$

$$a_{16} \times \frac{a(r-1)}{4} = r^2$$

$$a_{17} \times \frac{a_{17}}{4} = ar^2$$

$$a_{17} \times \frac{a_{17}}{4} = \frac{a}{2}$$

$$a_{17} \times \frac{a_{17}}{4} = \frac{$$

[2)
$$C_{n} = 2 \times 3^{n-1} - 1$$
 のとき $3C_{n} = 2 \times 3^{n} - 3$ $t = 0$ 5 $2 \times 3^{m} = 3C_{n} + 3$
 5.77 $C_{n+1} = 2 \times 3^{m} - 1 = 3C_{n} + 3 \cdot - 1$ $= 1$
 $C_{n+1} = \boxed{3} C_{n} + \boxed{2}$ $= 2^{n} \delta_{3}$
 $c_{n} \in \mathbb{Z}$ $d_{n} = p C_{n}^{2} + 3C_{n} + 2$ $= 2^{n} \delta_{3}^{2}$
 $d_{n} \in \mathbb{Z}$ $d_{n} \in \mathbb{Z}$

$$227' \quad C_{n+1} - C_n = (2 \times 3^n - 1) - (2 \times 3^{n-1} - 1)$$

$$= 2 \times 3 \times 3^{n-1} - 2 \times 3^{n-1}$$

$$= (6-2) \times 3^{n-1} = 4 \times 3^{n-1}$$

$$= (1) + (1) + (2 \times 3^{n-1} - 1)$$

$$= 3 \times 2 \times 3^{n-1} + 2 \times 3^{n-1} - 2$$

$$= 3 \times 2 \times 3^{n-1} - 2 \quad \text{Tabis}$$

$$d_{n+1} - d_n = 4 \times 3^{m-1} \times 1 P(8 \times 3^{m-1} - 2) + 3$$

= $32P \times (3^{m-1})^2 + 4 \times 3^{m-1} \times (-2P + 3)$ である
これが 手に数引となるから $-2P + 3 = 0$ より $P = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ である

$$\begin{array}{lll}
\cos 2 & d_{n+1} - d_n = 32P \times 9^{n-1} \\
&= 32 \times \frac{3}{2} \times 9^{n-1} = 48 \times 9^{n-1} \quad 7'50!) \\
d_1 &= \frac{3}{2} C_1^2 + 3C_1 + 2 \quad 7'' C_1 = 2 \times 3^{1-1} - 1 = 2 - 1 = 1 \text{ Jy} \\
d_1 &= \frac{3}{2} \times |^2 + 3 \times | + 2 &= \frac{13}{2} \quad 7 = 5 \text{ Fins}
\end{array}$$

$$\begin{array}{ll}
m &\geq 27'' \quad d_n &= d_1 + \sum_{k=1}^{n-1} 48 \times 9^{k-1} \\
&= \frac{13}{2} + \frac{48(9^{n-1} - 1)}{9 - 1} \\
&= \frac{13}{2} + 6 \times (9^{n-1} - 1) \\
&= \frac{1}{2} + 6 \times 9^{n-1} \quad (=4113 d_1 = \frac{13}{2} \times 47 = 3)
\end{array}$$

In I dn = 1 +6 × 9 n-1 for sig	
$S_n = \sum_{k=1}^m dk = \sum_{k=1}^m \left(\frac{1}{2} + 6 \times 9^{k-1} \right)$	
$= \frac{6(9^{m}-1)}{9-1} + \frac{1}{2}m$	
$= \frac{3}{4}(9^n - 1) + 2 n$	۲ <i>43</i>

科各記号	正的	型2,点,
P1	14	2
ゥ	3	2
I	2	2
オカキ	231	4
クケ	32	3
コサ	32	3
シスセソ	3491	3
タナ	12	1

$$a\vec{P}\vec{A} + 6\vec{P}\vec{B} + 3\vec{P}\vec{C} = \vec{0} \quad \vec{a}\vec{y}$$

$$-a\vec{A}\vec{P} + 6(\vec{A}\vec{B} - \vec{A}\vec{P}) + 3(\vec{A}\vec{C} - \vec{A}\vec{P}) = \vec{0}$$

$$(-a - 9)\vec{A}\vec{P} + 6\vec{A}\vec{B} + 3\vec{A}\vec{C} = \vec{0}$$

$$\vec{a}, 7 \quad (a + 9)\vec{A}\vec{P} = 6\vec{x} + 3\vec{g} \quad \vec{x}\vec{y}$$

$$\vec{A}\vec{P} = \frac{\vec{0}\vec{A}\vec{P}}{\vec{A}\vec{P}} \vec{x} + \frac{\vec{3}\vec{A}\vec{P}}{\vec{A}\vec{P}} \vec{y}$$

(2)
$$\vec{AD} \cdot \vec{X} = \frac{1}{3} (2\vec{z} + \vec{y}) \cdot \vec{X}$$

$$= \frac{2}{3} |\vec{X}|^2 + \frac{1}{3} \vec{X} \cdot \vec{y}$$

$$= \frac{2}{3} \times 9 + \frac{1}{3} \vec{X} \cdot \vec{y} = 6 + \frac{1}{3} \vec{X} \cdot \vec{y} \quad \vec{z} \cdot \vec{y}$$

$$\Rightarrow \vec{x} \cdot \vec{y} = \frac{45 - a^2}{2} \quad \vec{x} \cdot \vec{y} \quad \vec{z} \cdot \vec{y} = 6 + \frac{1}{3} \times \frac{45 - a^2}{2} \quad \vec{x} \cdot \vec{y} = 6 + \frac{1}{3} \times \frac{45 - a^2}{2} \quad \vec{z} \cdot \vec{y} = \frac{1}{3} \cdot \vec{z} \cdot \vec{z} = \frac{1}{3} \cdot \vec{z} = \frac{1}{3} \cdot \vec{z} \cdot \vec{z} = \frac{1}{3} \cdot \vec{z} = \frac{1}{3}$$

(3)
$$AD = 2 \circ k ? \qquad |\overrightarrow{AD}|^{2} = 2^{2} s^{4}$$

$$|\overrightarrow{2x+y}|^{2} = 4 \text{ m/s}$$

$$4|\overrightarrow{x}|^{2} + 4\overrightarrow{x} \cdot \overrightarrow{y} + |\overrightarrow{y}|^{2} = 36 \text{ Jy}$$

$$4 \times 9 + 4 \times \frac{45 - a^{2}}{2} + 36 = 36$$

$$4 \times 9 + 2 (45 - a^{2}) = 0$$

$$18 + 45 - a^{2} = 0$$

$$a^{2} = 68$$

$$5 \times 7 \quad 0 = 3 / 7$$

$$y = 9$$

20点